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Stable Model Reference Adaptive Control

in the Presence of Bounded Disturbances

Gerhard Kreisselmeier and Kumpati S. Narendra

Abstract

The adaptive control of a linear time-invariant plant

in the presence of bounded disturbances is considered. In

addition to the usual assumptions made regarding the plant

transfer function, it is also assumed that the high frequency

gain k of the plant and an upper bound on the magnitude ofP

the controller parameters, are known. Under these conditions

the adaptive controller suggested assures the boundedness of

all signals in the overall system.

* Dr. G. Kreisselmeier is on leave from DFVLR - Institut fdr

Dynamik der Flugsysteme D-8031 Oberpfaffenhofen, West Germany,
January through June 1981 and is visiting the Department of
Engineering and Applied Science, Yale University.



1. Introduction: A major step in the development of adaptive systems theory was the

establishment in recent years of the global stability of several equivalent adaptive

schemes [1-3]. When the sign of the high frequency gain k p, the relative degree n

and the order n of the transfer function of a plant with zeros in the left half plane

are given it was shown that these schemes can be used to adaptively control the given

plant in a globally stable fashion. The latter implies that the parameters and

signals of the plant and the controller are bounded while the error between the

plant output and the output of a reference model tends to zero. The question

naturally arises as to how well these schemes perform in the presence of external

disturbances. In a recent report [4) it was shown that whin bounded output dis-

turbances are present the parameter error vector (P(t) can grow without bound even

though the state error vector between plant and model is bounded. This can be

attributed to the fact that the overall nonlinear adaptive system is only uniformly

stable but not uniformly asymptotically stable. Hence it became evident that modi-

fications in the basic adaptive schemes are necessary when bounded external dis-

turbances are present.

One such modification suggested in [41 resulted from the observation that the

adjustment of the parameter error vector (given by ;(M) is known to be in the

"1right" direction only when the output error e(t) is large. Hence, it was argued,

if a bound on the disturbance is known and 0 is adjusted only when the output error

exceeds a computed threshold, the signals and the parameters of the system would be

bounded. Such an adjustment corresponds to an adaptive law with a deadzone and in

[4] it is shown that the above conclusions are indeed true. The presence of the

deadzone however results in finite parameter and output errors even when no external

disturbance is present.

In this paper an alternate approach is taken which retains the potential of

obtaining zero output error e(t) (and zero parameter error 0(t) if the input is rich)
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in the limit when no external disturbance is present. Assuming that the desired

e*

constant controller parameter vector e has a norm less than a known upper bound,

the adaptive law is suitably modified when )16(t)11 exceeds this bound. This, in

turn, assures at the outset the boundedness of the parameter error vector 0(t)

despite the presence of the external disturbance. Demonstrating that all the other

signals within the adaptive control loop also remain bounded is the principal

result of the paper.

Surprisingly enough, the difficulty in the proof of stability does not arise

when some of the state variables grow rapidly (e.g. exponentially) but rather when

they grow slowly with time. In addition Ox(t)ll (where x is the state of the overali

system) need not grow monotonically, so that the usual limiting arguments cannot be

used directly. If Ox(t)l is assumed to grow without bound, the existence U an

arbitrarily large interval [t1 ,t 2] over which IUx(t)I is large, can be established.

It is shown that in such a case, the effect of the disturbance is relatively small

and hence arguments similar to those in the disturbance free case apply. This, in

turn, leads to a proof by contradiction.

2. Structure of the Adaptive Control System:

Let the plant to be controlled be represented by the equations

x A x + b u + dpv*

T (I)
c Tcx + Vyp pp 2

where x pup and yp are the state, input and output respectively and vI and v2

are plant and output disturbances. The transfer function of the plant is given by

TN (s)
c p p D (s) = W (s).

p

The following assumptions are made regarding W (s) and the disturbances V
p i

and v2

Throughout this report while representing a function of time the argument
't' is omitted for the sake of simplicity of notation when no confusion can arise.



-3-

(i) Np (s),D (s) are monic polynomials of degrees m and n respectively,

and dim(x ) = n.
p

(ii) m and n are known but the coefficients of N (s) and D (s) are unknown.
p p

(iii) N (s) is a strictly stable polynomial.
P

(iv) k is known.
p

(v) V 1 , V 2 are piecewise continuous and uniformly bounded time functions

+
defined for all t E R

A reference model is defined by the equations

x =Ax +br
m m m m (2)

T
y =cx
m mm

and its transfer function is defined as

T -1 1__ Ai~ Cs).
c (sI-Am) b = k 1 A k (
m m m m D (s) k P mm p

It is assumed that:

(i) D (s) is a monic, strictly stable polynomial.m
*A *

(ii) the degree of D (s) is n= n-m, and dim(x) = n
m

and (iii) r is a piecewise continuous, uniformly bounded reference signal.

The objective is to control the plant in such a fashion that the output error

between the plant and the model, i.e. eI  y - y , as well as all the state

variables remain uniformly bounded. This objective applies both to the case of

model following (r 1 0) as well as state regulation (r - O,ym - 0).

To meet the control objective, a controller described by the equations

v = Fv + gu (3a)
1 1 p

v 2 =Fv2 + gy p (3b)

T k
u = + - r (4)
P kP

is set up, where
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T L T Tv =[vlv2] and

(i) dim(v I ) = dim(v 2 ) = n.

(ii) F is an arbitrary, strictly stable matrix

(iii) (F,g) is a completely controllable pair

and e is a vector of controller parameters to be adapted.

The equations for the adaptive scheme are:

A 1 +bu (5a)

2 = A 2 + bmy (5b)

• T
= Fw + gc T (6a)

S1 m•T
2 = FW + gc T (6b)
2 2 mc2

[ T0 c T + YP]
e=-r T m- Ff(0) (8)

l+xX

OV1 )1 if lieU 0* 11
f(e) = max max (9)

Selsewhere

T(A T T T TA r T A T T
where x = [v C~ w 1 2 [W I w 2 , ] and

r = F > 0 is an arbitrary gain matrix

(ii) II e Im is a known upper bound on the norm of the (unknown)ma x

matching controller parameter vector 0

Since v is equal to the state of a nonminimal representation of the plant (except

for exponentially decaying initial conditions and the bounded effect of V1) [11,

the controller structure allows the generation of arbitrary state feedback.

Therefore a parameter vector 0 exists such that if 6(t) e then the poles of
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the closed loop system are the eigenvalues of F and the zeros of D m(S)Np (s).

Therefore the transfer function between the reference input r and the output

of the plant y becomes k W (s), as desired.

The block diagram of the control loop together with the disturbances v

and v2 is shown in Figure la. If 6 = 6 + , where * denotes the parameter error

vector, Figure la can be transformed as shown in Figures lb-le to yield

an error model with a bounded disturbance v at the output. From Figures

if-lh it follows that

w(t) T* cT (t) + y (t) - V(t) = 0 , (10)
ml p

v being a bounded disturbance due to Vl, 2 and initial condition transients.
1 2

T A T T
Defining T _ [x ,x ] and using (10) in (8) the overall adaptive control

p

system may be rewritten in the form

= A + b T(t)v(t) + P(t) (11)

= (t)[ T + '(0) (12)

i + x (t)x(t)

where A is a strictly stable matrix and -(t) is a uniformly bounded input vector due to

1,9V2 and r. The objective then is to show the global stability of the overall

system (1i)-(12).

3. Preliminary Analysis:

a) Adaptive Law:

A 1 T -1Let V = - Ir . Evaluating its time derivative along the trajectory of (12)
2

gives
T L T + ]

T - f) (13)
l+xx

From

T (-*)TO >T - 116*liell (14)

-i 6 = (- ) 6 I 6 6-
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and the definition of f(e) it follows that T Of(e) 0 0. Moreover, T Of(O) 
4

for 11011 >> 8 l.max * Since w/(l + x Tx) / 2 is uniformly bounded, this implies that

is negative definite for all V V and some V < -- Therefore V is uniformly

bounded and hence 0(t) is also uniformly bounded. Together with (11) this

implies that E(t) cannot grow faster than an exponential.

Taking the integral of (13) we obtain

2f x~ + T) ef(e)}d T $ t V1) ) + tf i-i-Tcv dt

t2 2 T2
tI  l+x x t I l+ xx

11

t
+f 1 dt (15)

1 2 T 1/2

where AI1 and A2 are appropriate positive constants.

In the absence of external disturbances the right hand side of (15) reduces

to a constant. Setting t2 = c it can then be concluded that T w/(l+x Tx)1/2 0

as t ->--, which in turn gives 4T v/(l+x Tx)/2 0 and e + 0 as t w [5].

In the present situation with disturbances, however, the integral on the

right hand side of (15) may tend to infinity as t2  =, even though x w as

t + . Therefore, the conclusions to be drawn from (15) have to be modified

suitably. This is done in section 4.

b) Control Loop:

Let W = -E PE, where P is a positive definite matrix and satisfies the

equation AT P + PA = -21. Evaluating W along the trajectory of (11) gives

_T + TPb(OT v + P)

_~ f -r I & T PrpbI [lL 1(l1)(- T 1/2 ( T 1/2 +( T 1/2) (16)

Since 1101 and IjT Pb/(&TE) /2 are uniformly bounded there exist positive constants

i' a < . such that
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T 22(t(t) : a (17a)

OTrt)v (t)1(t)t) < 2e (17b)

implies that the bracket term in (16) is greater than 1/2, i.e.

W(t) - KW(t) (18)

where K = 1/2 A (P). Hence W decreases exponentially at least with rate K
max

whenever (17) holds. On the other hand, if T(t)C(t) : 1 then the term within

brackets in (16) is bounded. Therefore a positive constant X < - exists such that

W(t) $ AW(t). (19)

Hence, whenever T(t)C(t) > 1, W can at most grow exponentially with rate A.

In what follows we make use of the fact that v(t) is the internal state of

a nonminimal representation of the plant, except for the bounded effect of the

bounded disturbances. Therefore positive constants clc 2 exist such that

11x ip 1 (l+c 1)1IIv + c2. Hence

I x l) I l; lx 11 + l1)x l
p

c llxll + c 2 (20)

In view of inequality (20)IM II and Jixl, when they are large, are equivalent as far

as the arguments in the following section are concerned.

4. Stability of the Adaptive System:

Based on the description of the plant and the controller and the assumptions

imposed on them as listed in section 2, we can now state our main result as follows:

Theorem:

The overall adaptive closed loop system described by equations (11) and (12)

is globally stable in the sense that for arbitrary bounded initial conditions and

bounded signal P(t) (or equivalently Vl(t),v 2(t) and r(t)), all states of the

adaptive system remain uniformly bounded.
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The basic idea of the proof of the theorem is as follows. The parameter

error )(t) has been made uniformly bounded at the outset by the introduction of

the term Fef(O) in the adaptive law (8) (see section 3). Therefore, only x(t),

(or equivalently i(t)) can grow without bound. If x(t) grows without bound then,

since it cannot grow faster than exp(Xt), it assumes values greater than a

constant a over an interval of time of length a, where a is arbitrarily large.

From (15) it follows that (T w) /(l+x Tx) and T Of(e) become less than some c

and hence (Ref. Appendix) that [jTvj/(l+x Tx) 1 /2 becomes less than C1 most of

the time within this interval. The latter implies (equations 17b and 18) that

Ilx(t)II decreases at the rate exp(-Kt) most of the time, and can increase at most

as exp(Xt) the rest of the time within the interval. Since the time interval over

which x(t) decreases is large compared to the interval on which it increases it

follows thatlIx(t)lwill assume a value less than a on the interval, which contra-

dicts the original assumption.

Proof:

Let us assume that

liM sup Ix(T)j . (21)
t-- T$t

Then, since I1xi can grow at most exponentially there exist monotonically increasing

sequences {tj},{a,} with lim t. =, lima = such that

It x(t) II = a i (22a)

Ix(t)t 1 a for all t c [t.,t + a.]. (22b)
I 1 1 1

Using (22b) in (15) we obtain

t +a Ttiai {f (4Tw) 2. + A
if{ (J.)2x+i/2 T Tf(O)}dt A A = A , (i 0) (23)

t~~~~ ~ 1/ ~xTX 121 2

Since ;(t) and the time derivative of w/(l+x Tx) /2 are uniformly bounded (see

Appendix), there exists a constant C, such that
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dt T (24a)dt I+xT X

and q { Taf()} C (24b)

t I/ 3

Let E C (0,C] be arbitrary and consider i i such that a '. 2CA/c . Theni
3

the interval T. [t.,t. + a ] can be expressed as the union of N = 2CA/c disjoint

subintervals, each being of length Ati greater than or equal to one.

If in any of these subintervals in T. there exists an instant of time such that
1

(T w) 2/(I+x Tx) + 0 Tf(e) c then (24) implies that this subinterval contributes to

2
the integral on the left hand side of (23) an amount of at least c /2C. Since the

integral is bounded by A there can be at most A/( 2/2C) = 2CA/c 2 of these sub-

intervals. Let the set of all such subintervals be denoted by Til. The worst that

can happen on T is that W increases according to W = AW.

Let Ti2 denote the set whose elements are the remaining 2CA(l/c 3 - l/ 2 ) sub-

intervals so that Ti = T ilUTi2 We have ( W) 2/(+x Tx) + T Of() < c when t E Ti2.

It is shown in the Appendix that this implies 1Jv1/(l+xT x)I '2 < h(E), where h(.)

is a continuous function with lim h(C) = 0. Hence, if c is sufficiently small,

then we haveW < -<W on Ti2'

Therefore
A-At

W(t +(j+l)At ) ~W(ti+jAt i) e (0 j I < N-1) (25)

where A - on Til and A. = on T i2 This implies

'2CA
W(t+a.) < W(t) exp---- [-(i-t) + Ah. (26)

T 0

Using [x T,x] and (20),(26) we finally obtain
p

II x(t.+a.)U i, (t.+a.)i 12

)Mt min(P[ max exp{- [-K + C(X+K)]}

II mi (p) 3 ~
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a [c + c C3 ]  
. max 

.

S 2 min (P)

C exp{CA [-K + c(X+K)]}. (27)

Obviously, the right hand side of (27) can be made less than a. if C is

sufficiently small. But this is a contradiction to (22b). As a consequence, the

assumption (21) was wrong, i.e. x(t) is uniformly bounded, and so is &(t) according

to (20). E

5. Conclusions:

The model reference adaptive control problem in the presence of bounded dis-

turbances is considered in this paper. The principal result of the paper is that

if an upper bound 1]0 11 on the norm of the unknown controller parameter vector 0
max

is known and the adaptive law is suitably modified when [I011 > 110 max then in

spite of the disturbances all parameters and signals in the adaptive loop remain

bounded. In the absence of disturbances the modification is of no significance

and the output error e(t) between the plant and the model goes to zero as t goes

to infinity. This implies that the scheme suggested retains the properties of

earlier schemes and is, in addition, robust with respect to bounded disturbances,

which makes it suitable for use in practical applications.

As mentioned in the introduction, an alternate resolution of the problem is

that if an upper bound on the magnitude of the disturbance is known, then a suitably

designed deadzone in the adaptive law also guarantees the boundedness of all

parameters and signals in the adaptive system [4]. In the latter approach the

descent property of the parameter error vector p(t) is always retained, whereas

the output error e(t) is only assured to lie within the deadzone as t - -, even

in the absence of disturbances. From this it is evident that the two approaches

behave quite differently both in the presence of disturbances (in which ;(t) may

not go to zero in the scheme suggested in this paper) and in the absence of dis-



turbances. Therefore, the analysis of their relative behavior deserves further

investigation. Combining the two approaches appears to be possible and also

interesting for practical applications.

In the adaptive law, which is considered in this paper, the parameter

adjustment is based on the instantaneously available information. Instead,

all the information that has become available up to time t could be used in

order to improve the speed of adaptation properties, as suggested in [5]. The

adaptive law then becomes

t (-t)[wT ()e(t) - c (T) + y (T)]

J T m I - e q dt-T- - ref(e) (28)

0 1 + x (T-[x()

where q > 0 is an arbitrary constant. The equation for the parameter error then

is given by

t T
;(t)t rj W(T)[(W (T)(t) + v(T)] e-q(t-T)dt - tef(e) (29)1 + x T(T)X(T)

Since (12) and (29) are structurally the same, the stability arguments of this paper

can also be applied to show the stability for the adaptive law (29).

It is assumed in this paper that the high frequency gain k of the plant isP

known. This results in a relatively simple proof of stability. The basic idea

of modifying the adaptive law based on knowledge of 11i* m can, of course, alsomax

be applied when k is unknown. A proof of stability may then be obtained along
P

the same lines as in this paper, although the details may be more involved.
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Appendix

(i) We first verify that there exists a positive constant C I< such that

1±

vi C1  (Al)

U c1 (A2)

S/(l+x Tx) 1 C1  (A3)

()/l+xTx)i/ 2 C1  , (0 < i < n + 1) (A4)

d {Ti) /(l+xTx)1/2 C1 , (0 i n (A5)

(i)
where w denotes the i-th time derivative of w.

(Al) holds by assumption. (A2) was shown in section 3. (A3) follows from

(i
(A2) and (11). (A4) is true since il) is proportional to c for i = 1,...,n

•T I,
and proportional to and upY for i = n + 1. From u = v e + r it follows that

p p

u /(l+x Tx) /2 is uniformly bounded because so are e and r. Since v is equal to thep

state of a nonminimal representation of the plant except for the bounded effect

T 1/2of the bounded disturbances v ,V2 it follows that y /(l+x x) is also uniformly
1 2 p

bounded. This establishes (A4). (A5) follows from (A4) and (A2),(12).

(ii) It is to be shown that

ii x(t) I 1/ E (A6)

t f [t ,t2
T 2 1[@r(t)w(t) ] + A

(t)(t )  + T(t)e(t)f(e(t)) < J (A7)
1+ XT (t)x(t)

and t2 - t 1 implies

IiT(t)v(t)lI[1 + xT (t)x(t)]1 /2 < h(e) t E [tl~t2] (A8)

whee {: + R+
where {h: R+ -*- R+ is a continuous function and such that lim h(C) = 0.

e4 0
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Since T f(e) 0, each term of the sum in (A7) is less than c. Making use

of the fact that f(6) = 0 for 1ell II e I , we obtain
max

f() < C 
= T

E 1 (A9)

max Q

(12) together with (A7),(A9) gives rise to

, Iij<,j l.  (A U J T j vj + ,hel,. l e

WIl 1 u T 12 f(6)L
(l+x Tx) 1/2 (l+xTX) 1/2

< Ilii { /7 + g3c + :/(11*1 -It max

2 rc , (0 < C ).A0)

Now let

Tt [tlt2] (All)

hold for some E > 0 and 0 i < n• This is true for i = 0 and C 0 / by the

hypothesis (A7). For i + 1 we obtain the following identity by partial integration

t+At T (i+l) T (i) t+At t+Atr T (i) t+At T i
t+A ( T+xrX) 1/2 T 1/2 i 2  t (l+xrT-X) I 1 2

T.
x x dTr (A12)

T
l+xx

where [t,t + At] c ft ,t 2]. Defining C - max{l,C ,C } it follows that

t+At O (+T ) dt < 2E, + At (C2  & + £iC) (A13)

STx)1
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If the integrand on the left hand side of (A13) is equal to E at time1+i

t E [t ,t 2] , then by choosing At = c i+l/C and t such that t E [t,t+At], we obtain
2

the result that the integral in (A13) is greater than or equal to At-+ /2 = 2 /2C.
1+1 i+l

Inequality (A13) then can be rewritten as

2 2C - 2c i+(C2 VE+ CiC) - 4eIC < 0 (A14)

Solving (A14) for the maximum possible 6i+1 we get

C il = (C 2 ,E- + E.C) + {(C2 £ve- + Ei C) 2 + 4c.C}1 / 2  (AI5)

In conclusion, (All) holds for E = and El, , * being defined recursively

n
by (A15). *

n Mi
Since v = E d.w from (3) and (5),(6), it follows that

i=0

Tv n T (i)

(l+xTX) 1/2 = i d 1/2(lix0x) (l+x x)

n
A

E d c = h(c) (Al6)
i=O

Hence lim h(E) = 0, which was the result to be proven.
E +O
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